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ABSTRACT

This technical report details the framework we use to solve
ICME-2024 challenges, and the task is to design an au-
dio scene classification system to distinguish acoustic scenes
recorded from different devices, within the constraints of a
large number of unlabeled training data. Our architecture is
predicated on the robust audio SSL (self-supervised learn-
ing) model – EAT, which we pre-train on three comprehen-
sive datasets to capture a rich tapestry of audio scene char-
acteristics. The potency of our approach lies in the semi-
supervised methodology that leverages self-learning to bol-
ster the model’s generalization capabilities for downstream
tasks. This is achieved through iterative fine-tuning and the
strategic application of pseudo-labeling, which together refine
the model’s acumen in scene classification. In the pursuit of
optimizing our model’s evaluation performance, we employ
the test-time adaptation strategy during inference.

Index Terms— acoustic scene classification, self-
supervised learning, semi-supervised learning

1. INTRODUCTION

Acoustic Scene Classification (ASC) aims to classify audios
into scenes based on their characteristics.ASC models may
have distributional differences between training and test data,
resulting in a decrease in the model’s ability to generalize to
real-world applications. This domain bias can be caused by
several factors, including different recording devices, differ-
ent geographical regions, and different cultural and linguistic
backgrounds. Addressing this domain bias is crucial for real-
izing more robust ASC models. In practice, labeled acoustic
scene data is often difficult to obtain, while unlabeled acous-
tic data is relatively abundant. How to effectively utilize these
unlabeled data is important for improving the performance of
ASC models. Semi-supervised learning techniques can be ap-
plied to utilize unlabeled data to enhance the training and gen-
eralization capabilities of models. How to solve these prob-
lems encountered so far has become the focus of researchers
and technicians.

In order to obtain the effective information of audio, self-
supervised learning (SSL) model EAT [1] is used to pre-train
a large number of unlabeled data. Through self-supervised
pre-training, the model can learn useful representations of the
audio data, providing better feature extraction for subsequent
classification tasks.

Then fine-tune the pre-trained obtained model using la-
beled acoustic scene data. The pre-trained model is used as
the initial model for supervised training of classification tasks
using labeled data. Through fine-tuning, the model can learn
more discriminative features based on the specific ASC task
and improve the model’s classification accuracy in specific
scenes.

Based on the fine-tuning, a pseudo-labeling approach is
used to further utilize the unlabeled data for iterative training.
First, pseudo-labels are obtained by inferring the unlabeled
data using the fine-tuned model. Using these pseudo-labels
as approximate labels for the unlabeled data, the labeled data
and the unlabeled data with pseudo-labels are mixed together
for training to further optimize the model.

Also, we incorporate a test-time adaptation strategy into
our ASC framework. During inference, the model dynami-
cally adjusts its predictions based on the characteristics of the
input samples. This adaptation process allows the model to
account for the domain shift and capture the specific features
present in the testing data.

2. DATA PREPROCESSING AND AUGMENTATION

2.1. Datasets

According to the challenge rules, we utilize the ASC
challenge development dataset [2], TAU Urban Acoustic
Scenes (UAS) 2020 Mobile development dataset [3] and the
CochlScene dataset [4] for model pretraining. No more
datasets are used for model training.
TAU UAS. The TAU Urban Acoustic Scenes 2020 Mobile
dataset [3] consists of 64 hours of recordings from various
acoustic scenes. The recordings are captured in different
cities across Europe, using four devices (A, B, C, and D) si-
multaneously. In order to enhance the diversity of the dataset,



11 simulated devices(S1-S11) are created in the dataset, using
synthetic recordings simulated from device A.

CochlScene. The Cochl Acoustic Scene Dataset [4], abbre-
viated as CochlScene, is an acoustic scene dataset contain-
ing 76,115 ten-second audio files from 13 different acoustic
scenes. The recordings of the dataset are sourced from crowd-
sourcing participants in Korea and manually selected to en-
hance evaluation reliability.

2.2. Feature extraction

In our data preprocessing pipeline, all audio files are standard-
ized to a sample rate of 16,000 Hz. Then spectrograms are
generated using a Hanning window of 25 milliseconds with
a hop size of 10 milliseconds and an FFT window of 400.
Next, the spectrograms are transformed into 128-dimensional
log-mel spectrograms.

2.3. Data augmentation

For model training, three data augmentation techniques are
majorly employed: SpecAugment [5], Mixup [6] and Freq-
MixStyle [7, 8].

SpecAugment. SpecAugment [5] is a data augmentation
method for speech recognition. It directly modifies neural
network inputs, such as filter bank coefficients. The augmen-
tation policy involves warping features, masking frequency
channels, and masking time steps. Applied to Listen, Attend,
and Spell networks, it achieves state-of-the-art performance
on tasks like LibriSpeech and Switchboard.

Mixup. Mixup [6] is a novel approach for domain general-
ization. It leverages the probabilistic mixing of instance-level
feature statistics from different source domains. Inspired by
style transfer research, it implicitly synthesizes new domains,
enhancing model generalization. a popular data augmenta-
tion technique for training deep neural networks. It generates
additional samples by interpolating pairs of inputs and their
labels. By doing so, it encourages the model to learn more ro-
bust features and improves its ability to generalize to unseen
data. In our pipeline, the technique is used to generate more
samples of the log mel spectrogram of the audio clips from
each batch.

Freq-MixStyle. Freq-MixStyle (FMS) [7, 8] is a frequent
version adaptation of the original MixStyle [9] concept. It is
a novel approach for domain generalization, leveraging prob-
abilistic mixing of instance-level feature statistics from dif-
ferent source domains. In our pipeline, it normalizes the fre-
quency bands in one spectrogram and then denormalizes them
by using the combined frequency statistics from two differ-
ent spectrograms. In each batch, the technique occurs with a
probability determined by the hyperparameter pFMS , and the
mixing coefficients are drawn from a Beta distribution shaped
by α.

3. METHOD

In our study, we utilized the EAT model [1], an audio self-
supervised learning framework, as the foundational model
for the audio scene classification tasks. The model was first
pre-trained on three key datasets: the ASC Challenge Devel-
opment Dataset, the TAU Urban Acoustic Scenes Develop-
ment Dataset, and the CochlScene Dataset, aiming to cap-
ture diverse and generalized audio scene representations. Af-
ter pre-training, we adopted a semi-supervised approach –
self-learning, combining iterative fine-tuning with pseudo-
labeling, to improve the model’s accuracy on a validation set
derived from the ASC Challenge Development Dataset. This
strategy highlights the efficacy of integrating self-supervised
learning with semi-supervised techniques to enhance audio
scene classification.

3.1. Self-supervised Pre-training

In the domain of acoustic scene tasks, audio self-supervised
learning (SSL) models leverage pretext tasks like masked
language modeling (MLM) for pre-training, utilizing a vast
corpus of unlabeled data to learn audio features across vari-
ous scenes and devices. This self-supervised pre-training en-
ables these models to exhibit superior performance in down-
stream acoustic scene classification tasks. Specifically, we
employed the EAT self-supervised model, which adopts the
bootstrap self-supervised training paradigm within the audio
domain. During its pre-training phase, the Transformer-based
EAT model employs the Utterance-Frame Objective (UFO) as
a loss function, effectively integrating global utterance-level
and local frame-level losses for predicting audio scene rep-
resentations. It has achieved state-of-the-art (SOTA) perfor-
mance on audio classification datasets such as AudioSet (AS-
2M, AS-20K) and ESC-50, with a pre-training speedup of up
to ∼15 times compared to pre-existing SOTA audio SSL mod-
els. Consequently, for this task, we have opted to utilize the
EAT model to more efficiently learn acoustic scene features.

In our experiments, we leveraged the EAT framework for
pre-training on three datasets: ASC, TAU, and CochlScene.
To tailor the model more closely to the acoustic scenes spe-
cific to our task, we employed a weighted pre-training ap-
proach, thereby enhancing the model’s learning of acoustic
scene features present in the ASC data. Notably, we assigned
the weights of data from the three datasets in a 1:1:10 ratio.
This strategic weighting aims to optimize the model’s adapt-
ability and performance on our target acoustic scene classifi-
cation tasks, demonstrating the efficacy of a fine-tuned, self-
supervised learning approach in audio scene analysis.

3.2. Semi-supervised Learning

Given the limited amount of labeled data in the ASC Devel-
opment Dataset (1,740 labeled instances versus 6,960 unla-
beled instances), relying solely on supervised learning with



labeled data poses a challenge in enhancing the model’s gen-
eralization capabilities. Therefore, we have implemented a
self-learning-based semi-supervised learning method to ad-
dress this limitation, which harnesses the largely untapped po-
tential of the abundant unlabeled data available in the dataset.

The basic implementation process of our semi-supervised
learning method unfolds iteratively, incorporating two main
stages: fine-tuning and pseudo-labeling. Initially, the pre-
trained EAT model is fine-tuned on the available labeled data
on ASC with standard cross-entropy loss function as below.

L = −
M∑
c=1

yo,c log(po,c) (1)

The fine-tuned EAT is then utilized to predict classes of
unlabeled ASC data. This prediction process employs a confi-
dence threshold to selectively generate pseudo-labels, ensur-
ing that only labels with a prediction probability above this
threshold are retained as hard labels. This approach refines
the quality of pseudo-labels, creating an augmented dataset
that integrates both the original labeled data and the high-
confidence pseudo-labeled data.

Following the pseudo-labeling stage, the model under-
goes a fine-tuning process. During fine-tuning, the model
is re-trained on this augmented dataset, allowing it to adjust
and improve based on a broader set of examples, including
those it has pseudo-labeled. This iterative cycle of pseudo-
labeling and fine-tuning is repeated, with each iteration aim-
ing to enhance the model’s generalization ability by leverag-
ing insights gained from the expanded training dataset.

3.3. Test-time Adaptation

Before the final results, a test-time adaptation method based
on k-nearest neighbor (KNN) [10] is employed to minimize
the effect of domain shift between the development and the
evaluation sets. First, we extract the embeddings of all la-
beled samples of the development set and store them to form
a memory bank for KNN. When inferring, the embedding of
each sample in the evaluation set is compared with the embed-
dings in the memory bank via cosine similarity. According to
the distances of the k-nearest neighbors, scoring coefficients
are utilized to give the final results. More specifically, let yj
be the label of xj , and 1{yj} is the one-hot vector of xj .ML

is the set of embeddings of all labeled samples in the devel-
opment set. For each embedding xi, we use KNN to find k
nearest neighbors in ML by adopting cosine similarity. The
process can be described as follows:

wij =
xT
i xj

∥xi∥2∥xj∥2
(2)

Then the final result can be given by:

η(xi) = Softmax

 ∑
xj∈NML

(xi)

wij1{yj}

 (3)

In addition, the model parameters are not modified during
this process, which is within the rules of the challenge.

4. EXPERIMENT

In the pre-training phase, we used 4 GTX3090Ti’s and uti-
lized the framework of the EAT model to train 20,000 up-
dates, using the adam optimizer with lr of 0.0005, adam betas
set to [0.9, 0.95], weight decay of 0.05, and cosine for the
learning rate scheduler, under the ema framework, ema decay
is 0.9998, ema end decay is 0.99999.

In the finetune stage, we trained 3000 updates with a sin-
gle GTX3090Ti and then iterated on the unlabeled data in-
ference, filtering out the ones with confidence over 0.85 as
pseudo-labels and then put them into the model for training.
Mixup and SpecAugment were added to the training, and part
of the TAU dataset that overlaps with the ICME challenge
was added, and the training of the data here was weighted to
ensure that the labels remained relatively balanced.

Because the training set given by the chanllenge is very
prone to overfitting, in order to test the impact of each com-
ponent on the model performance, we used a small-sample
training method, dividing a very small portion of the labeled
data for finetune to predict the pseudo-labels, in order to find
the appropriate hyperparameters.

5. CONCLUSION

In ICME-2024 challenges, we use SSL model to obtain the
representation with more information about itself. To obtain
a more robust model, we fully utilize the given dataset and
use a weighted approach to ensure the direct balance of each
dataset, and then we use semi-supervised learning to better
utilize the unlabeled data, and apply a test-time adaptation
strategy to improve the performance and generalization of the
model.
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